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Abstract--Off-axis  Mohr circles are used to represent asymmetric second-order tensor quantities that describe 
deformation with homogeneous position gradients or flow with homogeneous velocity gradients. The validity of 
this representation is demonstrated.  Several applications to problems of inhomogeneous deformation are 
explored by considering neighboring domains A and B that are homogeneously but differently deformed or 
flowing. The compatibility condition in Mohr space is that the circles for A and B should intersect in a point that 
represents the material line of the A/B boundary. In the first application it is assumed that the stretch tensor is 
known for each domain, and a Mohr  construction is used to find the orientation of a compatible A/B boundary 
and the rotation of one domain with respect to the other. The second application is similar but involves the 
instantaneous state of a system. Non-parallel simple shearing at known rates is assumed in A and B, and a 
construction is used to find the instantaneous orientation of a compatible boundary and the spin of one domain 
with respect to the other. The third and fourth applications apply Mohr circles to problems of deformation 
interpolation and deformation averaging. In the former a deformation and shape is found for a domain C that lies 
between A and B, themselves incompatible, such that the A/C and C/B boundaries are both compatible. 

NOMENCLATURE 

D position gradients tensor, forward deformation 
d position gradients tensor, backward deformation 
L velocity gradients tensor 
l,i direction cosines relating sets of orthogonal,  Cartesian axes 
R rotation tensor, forward deformation 
S right stretch tensor, forward deformation 
S' left stretch tensor, forward deformation 
s'  right stretch tensor, backward deformation 
s left stretch tensor, backward deformation 
T second-order tensor, unspecified 
W vorticity vector 
w vorticity tensor 
X~ coordinates in earlier state, conventional undeformed state 
x~ coordinates in later state, conventional deformed state 

engineering shear-strain rate 
strain-rate tensor 

0 counterclockwise rotation of new two-dimensional reference 
axes relative to old axes 

w angular velocity magnitude. 

restricted to two-dimensional cases and to tensors refer- 
red to orthogonal Cartesian axes. 

MOHR CIRCLES FOR ASYMMETRIC TENSORS 

Consider any second-order tensor T with components 

Tii = [ Tu T12], 
Lr21 (1) 

where T12 is different from T21 and the tensor is by 
definition asymmetric. A circle can be constructed in Ti i  , 

Tii (i ~ j) space for given values of the components as 
shown in Fig. 1. Points are plotted with coordinates (Tll, 
-7"21 ) and (T22, T12 ). A line is drawn between these 
points and a circle is drawn about the line as diameter. 
The circle has its center at (a, b) and diameter D, where 

INTRODUCTION 

MOHR circles centered on the horizontal axis of Mohr 
diagrams have been used for many years to provide a 
geometric representation of symmetric second-order 
tensor quantities, like the state of stress at a point or the 
state of strain. Recently Robin (1977), De Paor (1979) 
and Lister & Williams (1983) have employed Mohr 
circles that are not centered on the horizontal axis of 
Mohr diagrams, to represent asymmetric second-order 
tensors, and De Paor (this issue) has found an antique 
example of the idea in the work of De La Hire (1685). 
The aims of this paper are to show why Mohr circles 
provide valid representations of any second-order ten- 
sor, symmetric or asymmetric, and to explore some 
applications that arise in the study of bodies that have 
been inhomogeneously deformed. The discussion is 

['I"22']'12) ~ T 

L T2~ Tz2J 1 1 

Fig. 1. Mohr circle for an asymmetric second-order tensor T witt. 
components  as given. (a, b) are the coordinates of the center of the 

circle and D is its diameter. 
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2a = 7'11 + TeE (2) 

2b = T x 2 -  T21 (3) 

D e = (Tl2 + T2,) z + (T1, - TEE) 2. (4) 

This circle turns out to be a Mohr  circle representing the 
tensor T. Before demonstrating this we underscore two 
steps in the construction. We reverse the sign of Tal 
before treating it as a coordinate value in Mohr  space, 
and we use pairs of values in columns of matrix (1) to 
locate each point in Mohr space. The sign change will be 
familiar to those used to the difference between tensor 
and Mohr  circle sign conventions for stresses or strains. 
Ei ther  T12 or T21 can be changed. The resulting two 
Mohr  circles are mirror images of each other  across the 
horizontal axis. Here  we arbitrarily reverse the sign of 
T2~. Plotting pairs of values from columns rather than 
rows of (1) is required to ensure that each point on the 
Mohr diagram represents geometrical attributes of some 
particular material line, where T is an asymmetric tensor 
involving either deformation or a state of  flow. 

If the quantities (1) are components  of a second-order 
tensor, then by definition 

T ' k l  = lkilljTij ( 5 )  

where the T'k~ are components  of the tensor with respect 
to axes rotated 0 degrees counterclockwise from the 
original axes, and where the lij for the two dimensional 
case are 

:] l,, [I-'llE' ' '/:] [ cos0  sin 
[_-sin 0 cos 

This is the transformation formula for any second-order 
orthogonal Cartesian tensor whether  it be symmetric or 
asymmetric. 

To demonstrate that the circle of Fig. 1 is a Mohr  circle 
we have to show that the points (T'11, - T ' 2 1 )  and ( T ' 2 2  , 

T'IE ) always plot at opposite ends of some diameter of 
the same circle, no matter  how we choose 0. In short, we 
have to show that the parameters  of the circle ( a, b and 
D) are invariant under the transformation (5), or that 
the quantities on the right-hand side of (2)-(4) are 
invariant. 

By (5) 

T 'u  = COSE0 Tu + cos 0sin 0 Tie 
+ sin 0 cos 0 T21 + sin 2 0 TE2 (6) 

and 

T'ee = sin e 0 Tll - sin 0cos 0 Tie 
- cos 0 sin 0 T21 + cos 2 0 T22. (7) 

Substituting these into (2) yields a primed value of 2a 

2a' = (cos 2 0 + sin 2 0) Tu + (sin 2 0 + cos E 0) T22 
= T~l + T22 

which is evidently always equal to the unprimed value. 
2a is therefore invariant. This could have been recog- 
nized immediately, since Tu + T22 is the 'first invariant' 
or ' trace'  of  any two-dimensional, second-order tensor. 

Again by (5) 

( T~2,T12 

:Taa,T~2)____ 

/ "  ~ 

old components 

x2 Xl 
new components 

°° L-~.2~ :ogj x1 

Fig. 2. Invariance of the  Mohr  circle for the tensor  of Fig. I with change 
of axes. The  new axes (x'~) are rotated 50 ° counterclockwise with 
respect to the old axes (xi). The  new components  of  T plot on the same 

circle as the old components .  

T ' 12  = --COS 0sin 0 T u + cos e 0 T~E 
-- sin E 0 TEl + sin 0cos 0 Tee (8) 

T'E1 = - s i n  0 cos 0 T u - sin e 0 TIE 
+ cos e 0 TEl + cos 0 sin 0 Tee. (9) 

Substituting these into (3) yields 

2b' = (cos 2 0 + sin e 0) T12 - (sin e 0 + cos e 0) Tel 

= T12 - T21 , 

so 2b is also invariant. 
Substituting (6)-(9) into (4) and combining some 

terms we obtain 

D 2 = [ -2 ( co s  0sin O)(Tu - Tee) + (cos 2 0 -- sin 2 0) 
× ( T 1 2  + 7"21)] 2 + [ ( c o s  e 0 - s i n  e O)(Tu  - Tee) 
+ 2(cos 0sin O)(TIe + T20]:. 

Squaring and combining like terms, this becomes 

D e = [ ( c o s  2 0 - sin E 0) + (2 cos 0 sin 0) E] 

× [(Tu - T2E) 2 + (TI2 + T21)EI 

which equals (7"11- Te2)e + (TIe + T202 since the 
quantity in the first brackets is alway equal to 1. There-  
fore D 2, like 2a and 2b, is invariant under (5), and the 
circle of Fig. 1 is a Mohr  circle in the sense that the 
components  of a given tensor T always plot on it no 
matter  how the axes are chosen. Figure 2 shows an 
example of this invariance of the circle with changes of 
axes. The points (7"11, -7"20 and (Tee, T12) define the 
diameter of the circle with respect to the original axes, as 
in Fig. 1. The points ( T ' u ,  - T'21) and (T'22, T'12) define 
another  diameter of the same circle when the axes are 
rotated 50 degrees counterclockwise. Note that the angle 
and sense of rotation of the new axes with respect to the 
old axes corresponds to half the rotation required to 
bring the diameter  connecting the old components on 
the Mohr circle into coincidence with the diameter 
connecting the corresponding new components.  
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Mohr circles for the velocity gradients tensor and the 
position gradients tensor 

The components of these asymmetric tensors are 
respectively the coefficients Lij in the velocity equations 

Vl = L l lXl  +L12x2 (10) 
V 2 = L21X 1 + LzzX 2 

and the coefficients Dij in the coordinate transformations 

xl = DllXx + DlzX2 
X 2 = D z l X  1 + D22X 2. 

Equations (10) give the instantaneous velocity compo- 
nents (vl, v2) at any position (xl, x2) in space. Where the 
Lij are numbers themselves independent of position, the 
equations describe a velocity field with homogeneous 
velocity gradients and, accordingly, with identical strain- 
rate and vorticity at every point. Equations (11) give the 
deformed coordinates of any particle (xl, X2) in terms of 
its undeformed coordinates (X1, X2). Where the Oij a r e  

independent of position in space, the equations describe 
a homogeneous deformation with identical strain and 
rotation at every point. The quantities Dij are commonly 
but misleadingly called 'deformation gradients' (e.g. 
Truesdell & Toupin 1960, p. 245, Malvern 1969, p. 156, 
Means 1976, p. 173 and 1982, p. T2). Here such quan- 
tities are called position gradients, following Segel (1977, 
p. 184). The tensor D is called the position gradients 
tensor. The term deformation gradients tensor is 
reserved for third-order tensors which describe how the 
Dij or the dii (see later) vary with position. 

Figures 3(a) and (b) show heavy circles representing 
the tensors L and D. Each can be thought of as 
containing a symmetric part relating to strain and an 
asymmetric part relating to rotation. For the velocity 
gradients tensor L, the two parts are combined addi- 
tively. The decomposition of L into these two parts is 
represented in Mohr space by moving the circle vertically 
until it is centered on the horizontal axis (Lister & 
Williams 1982). In this position, the circle represents the 
symmetrical strain-rate component ~ of L. The vertical 
displacement represents the antisymmetrical vorticity 
component w of L. The vertical displacement in Mohr 
space is W/2, where W is the magnitude of the vorticity 
vector (see Means et al. 1980). 

The tensor D is differently decomposed into symmet- 
ric and asymmetric parts. Here the two are combined 
multiplicatively, and their polar decomposition is rep- 
resented in Mohr space by swinging the D circle on a 
circular arc about the origin until it is centered on the 
horizontal axis. The circle there represents the symmet- 
ric right stretch tensor S of D (see Malvern 1969, p. 173), 
while the angle of rotation represents the rotation R. 
Notice that for both decompositions the diameters of the 
circles for the total asymmetric tensors are equal to the 
diameters for their symmetric parts. 

The Cartesian coordinates of points on any L or 
circle represent the longitudinal strain-rate ~ and angular 
velocity to of particular material lines (Lister & Williams 
1982). The axes of this type of Mohr diagram can 

ca b 

Fig. 3. Decomposition of the tensors L and D into symmetric and 
asymmetric components. (a) Decomposition of L into its vorticity and 
strain-rate components. (b) Decomposition of I) into its rotation and 
right stretch components. In both diagrams the points on the circle 

represent material lines parallel to the axes of reference. 

(L22'L12) 9, 

",,.7" 
" ' - . ~ x l ( L 1 1 , - L 2 1 )  ~"~ xl ' '  .~ 

¢ 
X1 

o b 
Fig. 4. Mohr circle for a velocity gradients tensor (a) and corresponding 
diagram in geographic space (b). Points on the circle with maximum 
and minimum ~ coordinates represent material lines in the principal 
directions of the strain-rate tensor. A general point l on the circle 
represents a material line inclined as shown in (b) to the xl and ~1 

directions. 

accordingly be labelled ~ and w as in Fig. 4. For the 
special case of zero vorticity, and for this case only, the 
vertical coordinate can also be interpreted as the tensor 
shear-strain rate y/2. For all other cases the vertical 
coordinate is the angular velocity of a material line with 
respect to the coordinate axes. 

The orientation of the material line l represented by 
any point I on an L or ~ circle is read as shown in Fig. 4. 
The angles xx A l or ~ ^ l measured in the Mohr dia- 
gram are equal in magnitude and sense to the corre- 
sponding angles in geographic space (Fig. 4b). 

Since Lu  and -L21 are the extension rate and angular 
velocity of the material line instantaneously under 
(parallel to) the Xl axis, we can refer to the (L m -L21 ) 
point on the L circle as the xl point. Similarly the (L2z, 
L~2 ) point is the x2 point. This simpler annotation on the 
Mohr diagrams will be used in what follows, for D and S 
as well as for L and ~ circles. 

The Cartesian coordinates of points on D or S circles 
have no simple significance in terms of longitudinal 
strains and rotations of material lines, but the polar 
coordinates about the origin of the graph do have simple 
significance (Means 1982). The radial coordinate of any 
point on a D or S circle is the stretch of a material line. 
The angular coordinate is the rotation of the same 
material line. The stretch is read using the scale laid out 
along the Mohr axes; the rotation is read by measuring 
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- D21, D12 

1 X1 

1 Dll, D22 

/ A ~ I A . ~  

X 2 ~  ~ 

cl b 
Fig. 5. Mohr  circle for a position gradients tensor. (a) Points XI and X z 
[at (Du,  -D21) and (D22 , O12), respectively] represent  material  lines 
parallel to the axes of reference in the undeformed state. A general 
point  I represents a material line with stretch Si and rotation ~b I is given 
by its polar coordinates (in this case 2.6 and 67 ° clockwise). (b) Same 
circle, showing how to read the orientat ion of l with respect to Xi in the 
undeformed state and with respect to the principal stretch direction S I. 
Points S1 and $2 on the circle at maximum and minimum distances from 
the origin represent  material  lines parallel to the principal directions of 

the right stretch tensor. 

the angle from the ray to a point toward the horizontal 
axis of the diagram (Fig. 5a). These relations are 
demonstrated in Means (1982) for the S circle. They also 
apply to the D circle, since the rotation of any line is the 
sum of the rotation due to strain and the extra rotation 
imposed on all lines by the (rigid body) rotational com- 
ponent  of D. 

The material line represented by any point on a D or S 
circle is found by measuring the angles X 1 A I or S~ A l as 
shown in Fig. 5(b). Note that these are angles measured 
in the undeformed state. 

Mohr circle for the reciprocal position gradients tensor 

Equations (11) gave the deformed coordinates in 
terms of the undeformed coordinates. Inversion gives 
equations 

X 1 = D - I l l X I  + D-112x2 
X2 = D - I z l x 1  + O - l z z x 2  (11) 

which represent the imaginary backward deformation 
that would convert the deformed coordinates of particles 
back into the undeformed coordinates. The components  
of D - l ,  the reciprocal position gradients tensor, also 
designated d, are related to the components  of D for the 
forward deformation by 

where 

• d121---- r D22/A -DI2/A] , dij 

A = ( D l l D 2 2  - D12D21) .  

A Mohr circle can be drawn for d just as for D and the 
decomposition is also similar. Now the symmetric com- 
ponent ,  represented by the circle when it is swung until 
centered on the horizontal axis, is the right stretch tensor 
of the backward deformation s', or the inverse of the left 
stretch tensor of the forward deformation S'. Similarly, 
the left stretch tensor of the backward deformation s is 

(0,1) 
f< 

(-~7; '7) (1,0) 

(1Al,1A1) 
1.41 -.177] 

DiJ= [1.41 .177J 

dij= [.354 .354] 
L-2.83 2.83] 

(1 

. .~x~ l t  S Xl 

b C 

Fig. 6. Mohr  circles for a deformation with rotation and area change. 
(a) The deformation in geographic space. The components  of D can be 
read from the deformed coordinates of particles initially at (1, 0) and 
(0, 1), which become (Du ,  D21 ) and (Dr2, D22), respectively; dij are 
position gradients for the backwards deformation that would convert  
the rectangle back into the square. (b) Mohr  circles for D and its right 

stretch tensor  S. (c) Mohr  circles for d and its right stretch tensor s'. 

the inverse of the right stretch tensor of the forward 
deformation S, 

S' --  S ' - I  

s = S  -1 .  

Mohr circles for d and s' involve angles measured in the 
deformed state. Figure 6 shows a rotational deformation 
with area change and the corresponding Mohr  circles for 
D, S, d and s'. 

APPLICATION TO PROBLEMS OF 
INHOMOGENEOUS DEFORMATION 

Consider the simple situation in which an in- 
homogeneously deformed region is made up of two 
kinds of homogeneously deformed domains, A and B, 
that adjoin one another  across boundaries of zero width. 
For compatibility of deformation across such a bound- 
ary, lines parallel to the boundary in domains A and B 
must be identically stretched or shortened and identi- 
cally rotated in some common frame. The equivalent 
requirement in Mohr  space is that the circles for D or L 
in domains A and B must intersect in a point that 
represents the line of the boundary on both circles (Fig. 
7a). Where  the circles fail to intersect, or intersect in 
points representing different orientations of lines on the 
two circles, the compatibility condition is not satisfied 
(Fig. 7b). 

Circles that intersect at two points prompt the ques- 
tion: can two orientations of lines simultaneously satisfy 
the compatibility requirements? Can there be 'checker- 
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A/B in B 

0 b 

X2 

o 

A 

O 

Xl x l  

b 

A/B 

C 

Fig. 7. Pairs of Mohr circles representing homogeneous but different 
deformations in adjacent domains A and B. In (a) the circles intersect 
in a point representing the line of a compatible boundary A/B between 
the two domains in geographic space. In (b) the circles fail to intersect, 
or intersect in a point representing differently oriented lines in the two 
domains, so the boundary A/B is not a compatible boundary. (c) shows 
why there can never be more than one orientation of compatible 
boundary between two homogeneously deformed domains. A/B is 
assumed to be one compatible boundary and the other point of 
intersection l represents a candidate for a second compatible bound- 
ary. For the top case the inclinations of I(0) to the first boundary A/B 
are always different in sense in the two domains. In the bottom case 
they are always different in magnitude. Hence l can never be a second 
compatible boundary. 

board' deformation fields? Figure 7(c) shows that this is 
never possible. Compatible arrays of A and B must 
involve only one orientation of compatible boundary, as 
in the 'banded deformation structures' of Cobbold 
(1977). By the same argument, individual A/B bound- 
aries must always be straight, never curved, so long as A 
and B are homogeneously deformed. The foregoing 
general observations apply equally to two-domain finite 
deformations and to two-domain infinitesimal deforma- 
tion or rate-of-deformation fields. We now turn to more 
specific problems. 

Determination of relative rotation of two domains from 
knowledge of their finite strains 

In general, if domains A and B are differently strained 
from one another, yet deformed compatibly across their 
mutual boundary, the difference in strains will be accom- 
panied by a difference in rotations, or in other words a 
rotation of one domain with respect to the other. This 
can be illustrated with Mohr circles. 

Figure 8(a) represents two neighboring exposures, for 
example in two contrasted lithologies, in which the state 
of strain is different. We assume that the strain field is 
homogeneous within each lithology and that the two 

j/I  
c d 

Fig. 8. Mohr-circle solution to the problem of finding relative rotation 
of two compatible domains when their strains are known. (a) Ellipses 
representing states of strain in domains A and B. (b) Mohr  circles for 
the right stretch tensor of the backwards deformations s'  in each 
domain, s ' t  and s'2 are the principal stretches of the backwards 
deformation. (c) Same circles showing positions of points representing 
material lines in the deformed state in the xl axial direction and at 
various angles, measured clockwise, from the x 1 direction. (d) Rota- 
tion of the circle for domain B to bring a calibration mark (the 50 ° 

mark) on circle B into coincidence with the same mark on circle A. 

lithologies adjoin across a sharp contact. We ask how the 
observed states of strain in A and B may be used to 
establish the existence and orientation of a compatible 
A/B boundary and how domain B must have rotated 
with respect to domain A. 

Identical reference axes for the deformed and unde- 
formed states are selected parallel to the principal direc- 
tions of strain in domain A (Fig. 8a). This renders the 
rotation of A zero and any rotation of B is thus the 
rotation of B with respect to A. The components of S' 
are then written for domain A, 

, [1.88 O ]  (12) 
S Aij = 0 0.53 ' 

and for domain B in axes parallel to its own deformed 
principal directions 

S 'Bi j=[I '0450.6901-  (13) 

This is the left stretch tensor for the forward deformation 
in domain B, or in other words the strain in B, if it is 
thought of as following the rotational part of the forward 
deformation of B. For domain A, S' is indistinguishable 
from S since there is no rotation of A. Next each of these 
matrices is inverted to yield components of the respec- 
tive right stretch tensors s' of the backwards deforma- 
tion. 
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01 S ' A  = 1 . 8 8  

i069 01 S'B = 1.45 " 
(14) 

Components  (14) represent  the unstraining of B without 
rotat ion of its principal directions f rom their deformed 
orientation,  in a local reference f rame still parallel to the 
principal directions in B. 

The  Mohr  circle for S'A is drawn, and this also repre- 
sents dA since we have eliminated any rotat ion of A by 
choice of axes. The circle for s'B is then drawn and is seen 
not to intersect the circle for A (Fig. 8b). There  is 
evidently no possibility of a compatible  A/B boundary  
unless we add a rotat ion to B. This is represented by 
swinging the B circle about  the origin until it intersects 
the A circle in a point representing the same material  
line on both circles. To find the direction and amount  of 
the requisite rotation,  we identify points on each circle 
representing lines parallel to the Xl and x2 axes, and lines 
in various orientat ions measured clockwise f rom the xx 
axis. For  circle A, the xl and x2 points are coincident with 
the s'2 and S'l points, respectively. In domain B, xl is 
inclined 20 ° clockwise from the s'2 (=  S' l) direction. The 
x~ point on circle B can accordingly be found by drawing 
a chord from the right-hand extremity of  the circle that is 
inclined 20 ° clockwise from the horizontal axis (Fig. 8c). 

Once both circles are calibrated, some arcs are swung 
about  the origin until one is found that connects calibra- 
tion marks  bearing the same number.  For the present  
case, such an arc is the one connecting points represent-  
ing lines 50 ° clockwise f rom x~. This is the orientation in 
the deformed state of a compat ible  A/B boundary.  Its 
backward stretch can be read as 1.46, so the forward 
stretch is 0.68. The rotation of B is given by the angle 
through which the B circle must be swung to return f rom 
the position shown in Fig. 8(d) to the position shown in 
Fig. 8(b). In this case it is 15 ° clockwise for the backward 
deformat ion represented by the Mohr  diagram, or 15 ° 
counterclockwise for the forward deformation.  

Determination of the relative spin of two domains from 
their strain-rates 

This is an analogous problem to the preceding one, 
but involves instantaneous deformat ion rates rather  
than finite deformations,  and a correspondingly simpler 
Mohr  construction. Imagine adjacent  domains A and B, 
perhaps single crystals, that are undergoing dextral sim- 
ple shearing at the same rate but in different directions 
(Fig. 9a). We ask if there is a boundary  across which the 
two deformations are instantaneously compatible,  and if 
so, what is the necessary angular velocity or spin of the 
shear planes in B with respect to the shear planes in A? 

Axes are chosen with xt parallel to the shear direction 
in A. A calibrated Mohr  circle for L in A is drawn as in 
Fig. 9(b). It is a circle centered on the to axis with its x] 
point at the origin, since lines parallel to xl in A have 
zero longitudinal strain-rate and zero angular velocity. 

x 2 ~  

A - -  

Xl 

Cl 

------A ~ 

3 

X1]= shear 
/ direction 

b 

OA 
45  . . . . .  

15 

~-sheor 
direction 

c d 
Fig. 9. Mohr-circle solution to the problem of finding relative spin of 
two compatible domains when their strain-rates are known. (a) Adja- 
cent simple shearing domains A and B. (b) Calibrated Mohr circle for 
L in domain A. (c) Calibrated Mohr circle for L in domain B, assuming 
initially that the shear planes are not spinning with respect to the 
reference axes. (d) Same circles as in parts (b) and (c) but with the 
circle for B displaced vertically to bring the 30 ° calibration marks into 
coincidence on the two circles. This displacement in Mohr space 
corresponds in geographic space to adding a counterclockwise spin to 
the shear planes in B, to achieve instantaneous compatibility with A. 
(An alternative solution in this case is to spin B at the same rate 
clockwise, to achieve compatibility across a boundary 120 ° clockwise 

from xt). 

The x2 point on the circle is diametrically opposite,  at (0, 
q/). Various other points are identified by the angle that 
the corresponding lines make  with the xt direction. 

Next a calibrated circle is drawn for L in B assuming 
for the moment  that B like A has its shearing planes fixed 
in the designated reference frame. This circle is shown in 
Fig. 9(c). It  is identical in size and position to the circle 
for A but all the calibration marks are rotated 60 ° 
clockwise because the xl axis is inclined 30 ° clockwise 
f rom the shear planes in B. If the circles of Figs. 9 (b) & 
(c) are imagined superposed,  it is clear that no common 
point on the circles will bear  the same calibration 
number.  There  is accordingly no possible compatible 
boundary between domains A and B until we relax the 
assumption made above that the shear planes in B are 
not rotating. Relaxing this requirements means in Mohr  
space that we are free to move the B circle vertically up 
or down to see if this brings about  any coincidence of the 
same calibration ma=ks. It  does for the 30 ° clockwise 
mark  (Fig. 9d). This signifies that a boundary inclined 
30 ° clockwise f rom xl is an instantaneously compatible 
boundary  between the two domains. It  is shortening at a 
longitudinal strain rate of 0.43 ~, and rotating clockwise 
0.25 % The extra angular velocity that had to be imposed 
on B to bring compatibili ty about  is represented by the 
vertical distance through which the B circle had to be 
moved  from Fig. 9(c) to Fig. 9(d). It is 0.5 ~/ and 
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corresponds to a counterclockwise spin of the shear 
planes in B relative to those in A. Notice the interesting 
result in this case that to make the instantaneous defor- 
mation compatible in two simple shearing domains, we 
have converted the deformation in one of them into a 
pure shearing (the L circle for B is centered on the origin 
in Fig. 9d). 

Interpolation of  deformation in a domain between two 
incompatible domains 

In the preceding examples, we adjusted the deforma- 
tion in domain B to make it compatible with the defor- 
mation in domain A. This corresponds to physical situa- 
tions where the deformation in A is independently con- 
trolled and B accommodates to it. In other  situations, 
the deformation in B may also be independent  so that 
any incompatibility between A and B has to be accom- 
modated by the appearance of a linking zone C situated 
between A and B. The deformations in C must often be 
inhomogeneous,  but here we assume the geometrically 
simple situation in which the deformation in C, like that 
in A and B, is homogeneous.  

Figure 10(a) shows two incompatible deformations in 
domains A and B. A has undergone simple shear parallel 
to the xt axis while B has undergone pure shear with its 
SI direction parallel to xl. In the absence of an accom- 
modation zone between these domains there must be 
slip on the boundary as shown. 

Figure 10(b) shows Mohr circles for DA and DB. The 
shape of an accommodation domain C and the deforma- 
tion in C are to some extent interdependent.  Here  we 
pick orientations for the A/C and B/C boundaries and 
find the unique deformation in C that makes these 
compatible boundaries. A/C is picked parallel to the X1 
axis in the undeformed state and B/C is picked rotated 
15 ° counterclockwise from X1 in the undeformed state. 
These two points are located on the circles for A and B. 
The C circle must pass through these points, and thus its 
center is on the perpendicular bisector (dashed) of this 
chord of the circle. The center of the C circle is then 
found by locating that point on the dashed line from 
which rays to A/C and B/C make an angle twice the angle 
measured from A/C to B/C in geographic space. In this 
case the double angle is 30 ° counterclockwise. 

The X 2 point on the C circle can now be plotted 
diametrically opposite the X~ point (the point A/C in 
Fig. 10b) and the coordinates read to give the following 
description of De: 

[,0 ° ° 91 D c i j  - -  0.70J 

These values can in turn be used to draw pictures of the 
deformation of domain C as in Fig. 10(c). From the 
geometry of Fig. 10(b), it can be seen how, if zone C is 
made more parallel-sided, the necessary deformation in 
C becomes larger. 
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Fig. 10. Mohr-circle solution to the problem of finding the deformation 
in an accommodation zone C between two incompatibly deformed 
domains A and B. (a) Incompatible deformations in domains A and B 
and corresponding components of D. (b) Mohr circles for 1) in domains 
A and B and the construction used to find the circle for zone C as 
described in text. (c) Deformed and undeformed configurations of 

domains A, B and C. 

Deformation averaging 

Deformation averaging, or strain averaging (from 
field data), is usually undertaken to obtain bulk deforma- 
tions or bulk strains from information on local deforma- 
tions or strains within some larger region. Figure 11 
shows an example of deformation averaging. The defor- 
mations in two domains of equal undeformed area are 
known. B is sheared parallel to Xl and flattened perpen- 
dicular to Xl. A is flattened perpendicular to xl without 
shear. As Cobbold (1977) has shown, components for 
the bulk deformation are obtained by weighted averag- 
ing of the components of the two domains, component  
by component .  In the example of Fig. 11, A and B are 
weighted equally because they have equal undeformed 
areas. 

The corresponding Mohr construction is shown in Fig. 
1 l(b).  Circles for A and B are drawn with their X1 and X 2 
points identified. Lines are drawn connecting the two 
Xl's (in this case coincident) and the two X2's. Each such 
line is then divided according to the relative weights 
given A and B, to find the X 1 and X 2 points on the circle 
for the bulk deformation and hence the circle itself. 

Figure l l (c )  shows the circles for D A and D B swung 
down to positions where they represent SA and SB, the 
pure strain components  of the deformations. It can be 
seen that the true bulk principal stretch S~ is intermediate 
between, but not the average of, SA~ and SBt. S z for the 
bulk deformation is not intermediate between SA2 and 
SB2 but is greater than both. 
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Fig. 11. Mohr-circle constructions for deformation averaging to obtain 
bulk deformations or bulk strains. (a) Compatible deformations in 
domains A and B, the corresponding bulk deformation, and compo- 
nents of D. (b) Mohr circles for D in domains A, B and the construction 
used to find the circle for the bulk deformation (dashed). (c) Mohr 
circles for S obtained from part (b) by swinging the D circles about the 
origin until they are centered on the horizontal axis. (d) Comparison of 
the S circle representing the true bulk strain (dashed) with the S circles 

corresponding to Oertel's (1981) two methods of strain averaging. 

Figure 11(d) compares the Mohr circles for the true 
bulk strain with the Mohr circles that can be drawn using 
Oertel's (1981) two strain-averaging techniques. In 
accordance with Oertel's statements, the circle drawn by 
averaging the principal strains overestimates the true 
bulk strain, while the circle drawn by averaging the 
components in a common frame (averaging the coordi- 
nates of the Xt and X2 points) underestimates the true 
bulk strain. The common frame here is the frame of the 
X axes in the undeformed state, whereas Oertel uses a 

common f rame in the deformed state. The techniques 
described here can also be used to reproduce this case 
and to see whether  Oerte l ' s  generalization holds in other 
examples.  

CONCLUSIONS 

Mohr-circle manipulations of the kinds illustrated 
here may aid in understanding the complex geometry 
that characterizes even the simplest inhomogeneous 
deformations. They may also provide a basis for deriva- 
tion of equations dealing with the same phenomena, or a 
means of checking the results of using such equations. 
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